当前位置:新励学网 > 秒知问答 > 人船模型的位移如何推导的

人船模型的位移如何推导的

发表时间:2024-07-29 16:25:05 来源:网友投稿

人船模型的位移推导可以分为以下步骤:

1. 建立人船模型的数学表达式。

人船模型可以看作是质点系统,其中人的重量可以看作是一个附在船体上的质点,船体则可以看作是一个刚体。所以可以将系统的动力学方程写成这样:$Mddot{x} + Bdot{x} + Kx = f(t)$,其中 $x$ 为船体的位移,$M$ 为系统的质量矩阵,$B$ 为阻尼矩阵,$K$ 为刚度矩阵,$f(t)$ 为外部作用力。

2. 假设船体的位移是简谐振动。

由于人船模型在实际中往往是做简谐振动的,所以我们假设船体的位移 $x$ 可以表示成这样:$x = A sin (omega t + phi)$,其中 $A$ 为振幅,$omega$ 为角频率,$phi$ 为初相位。同时我们还要假设船体的速度和加速度分别为:$dot{x} = A omega cos (omega t + phi)$,$ddot{x} = -A omega^2 sin (omega t + phi)$。

3. 将简谐振动的位移、速度和加速度代入动力学方程中。

将假设的简谐振动的位移、速度和加速度代入动力学方程中,可以得到这样的表达式:$-MA omega^2 sin (omega t + phi) + BA omega cos (omega t + phi) + KA sin (omega t + phi) = f(t)$。由于外部作用力 $f(t)$ 是已知的,所以我们可以解出振幅 $A$、角频率 $omega$ 和初相位 $phi$。

4. 计算受力情况。

计算出振幅 $A$ 和角频率 $omega$ 后,就可以通过公式 $F = MA omega^2$ 计算出受力情况。在船体不受外部作用力时,受力应该为零,所以可以得到平衡位移 $x_0 = 0$。

以上就是人船模型位移推导的一般步骤。需要注意的是,人船模型的位移推导还需要考虑到人的重心位置、船体的稳定性等因素,以便更精确地计算出船体的位移。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!