当前位置:新励学网 > 秒知问答 > 函数可微分是什么意思

函数可微分是什么意思

发表时间:2024-07-30 06:08:57 来源:网友投稿

可微是指可以对函数进行微分运算。

一个函数可微的定义是:

设函数y=

f(x),且f(x)在x的领域内有定义,若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx)(其中A与Δx无关),则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx

设函数y = f(x)在x.的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) f(x0)可表示为 Δy = AΔx0 + o(Δx0)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。所以导数也叫做微商。

几何意义

设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),所以在点M附近,我们可以用切线段来近似代替曲线段。

多元微分

同理当自变量为多个时,可得出多元微分得定义。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!