当前位置:新励学网 > 秒知问答 > 约数法计算公式

约数法计算公式

发表时间:2024-07-31 10:05:51 来源:网友投稿

求约数个数的公式是m=(p1)^(x1)*(p2)^(x2)*(p3)^(x3)。

约数又称因数,整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。比如24=2*2*2*3=2³*3,再用各个质数的指数加一后再相乘即为此数的约数个数,比如 (3+1)*(1+1)=4*2=8,即表示24有8个约数。约数又称因数。整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除在自然数(0和正整数)的範围内,任何正整数都是0的约数。

4的正约数有:

1、2、4。

6的正约数有:

1、2、3、6。10的正约数有:

1、2、5、10。12的正约数有:

1、2、3、4、6、12。15的正约数有:

1、3、5、15。18的正约数有:

1、2、3、6、9、18。

20的正约数有:

1、2、4、5、10、20。注意:一个数的约数必然包括1及其本身。相关概念如果一个数c既是数a的因数,又是数b的因数,那幺c叫做a与b的公因数。两个数的公因数中最大的一个,叫做这两个数的最大公因数。约数也叫因数。求法枚举法枚举法:将两个数的因数分别一一列出,从中找出其公因数,再从公因数中找出最大的一个,即为这两个数的最大公因数。例:求30与24的最大公因数。

30的正因数有:

1、;2;3;5;6,10,15;30。

24的正因数有:

1、;2;3;4;6,8,12;24。易得其公因数中最大的一个是6,所以30和24的最大公因数是6。短除法短除符号就像一个倒过来的除号,短除法就是先写出要求最大公因数的两个数A、B,再画一个短除号,接着在原本写除数的位置写两个数公有的质因数Z(通常从最小的质数开始),然后在短除号的下方写出这两个数被Z整除的商a,b,对a,b重複以上步骤,以此类推,直到最后的商互质为止,再把所有的除数相乘,其积即为A,B的最大公因数。(短除法同样适用于求最低公倍数,只需将其所有除数与最后所得的商相乘即可)例:求12和18的最大公约数。解:用短除法,由左图,易得12和18的最大公约数为2×3=6。例:求144的所有约数。解:所有约数(72;2)(36;4)(18,8)(9,16)(3;48)分解质因数将需要求最大公因数的两个数A,B分别分解质因数,再从中找出A、B公有的质因数,把这些公有的质因数相乘,即得A、B的最大公约数。例:求48和36的最大公因数。把48和36分别分解质因数:48=2×2×2×2×336=2×2×3×3其中48和36公有的质因数有2、2、3,所以48和36的最大公因数是 2×2×3=12。辗转相除法(欧几里得算法)对要求最大公因数的两个数a、b,设b<a,先用b除a,得a=bq+r1(0≤r1<b)。若r1=0,则(a,b)=b;若r1≠0,则再用r1除b,得b=r1q+r2 (0≤r2<r1).,若r2=0,则(a,b)=r1,若r2≠0,则继续用r2除r1……如此循环,直到能整除为止。其最后一个非零余数即为(a,b)。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!