当前位置:新励学网 > 秒知问答 > 分块矩阵秩的运算法则

分块矩阵秩的运算法则

发表时间:2024-07-31 22:21:57 来源:网友投稿

因为分块矩阵相乘也要满足前者的列数等于后者的行数,(E B)是1*2分块,而A是1*1分块,不能右乘的。

如果对于每个分块阵所找到的极大无关行向量组都位于不同的行,则第一行的秩为每个分块阵秩之和:若不能找到,则第一行的秩小于每个分块阵秩之和。再整个矩阵看成行分块,即一“列”的矩阵,同理,所以结论成立。扩展资料:设A是一组向量,定义A的极大无关组中向量的个数为A的秩。在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。例如在阶梯形矩阵中,选定1;3行和3;4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。特别规定零矩阵的秩为零。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!