当前位置:新励学网 > 秒知问答 > 指数函数的单调性怎么表示

指数函数的单调性怎么表示

发表时间:2024-08-01 00:08:38 来源:网友投稿

(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,所以我们不予考虑,同时a等于0函数无意义一般也不考虑。

(2) 指数函数的值域为大于0的实数集合。

(3) 函数图形都是下凹的。

(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。(7) 函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)(8) 显然指数函数无界。 (9) 指数函数既不是奇函数也不是偶函数。(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。底数的平移:对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。即“上加下减,左加右减”底数与指数函数图像:

(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。幂的大小比较:比较大小常用方法:

(1)比差(商)法:

(2)函数单调性法;

(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。比较两个幂的大小时,除了上述一般方法之外,还应注意:

(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。 例如:y1=3^4,y2=3^5,因为3大于1所以函数单调递增(即x的值越大,对应的y值越大),因为5大于4,所以y2大于y1.(2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图像的变化规律来判断。例如:y1=1/2^4,y2=3^4,因为1/2小于1所以函数图像在定义域上单调递减;3大于1,所以函数图像在定义域上单调递增,在x=0是两个函数图像都过(0,1)然后随着x的增大,y1图像下降,而y2上升,在x等于4时,y2大于y1.(3)对于底数不同,且指数也不同的幂的大小比较,则可以利用中间值来比较。如:<1> 对于三个(或三个以上)的数的大小比较,则应该先根据值的大小(特别是与0、1的大小)进行分组,再比较各组数的大小即可。<

2> 在比较两个幂的大小时,如果能充分利用“1”来搭“桥”(即比较它们与“1”的大小),就可以快速的得到答案。哪么如何判断一个幂与“1”大小呢?由指数函数的图像和性质可知“同大异小”。即当底数a和1与指数x与0之间的不等号同向(例如: a 〉1且x 〉0,或0〈 a〈 1且 x〈 0)时,a^x大于1,异向时a^x小于1.〈3〉例:下列函数在R上是增函数还是减函数?说明理由.⑴y=4^x因为4>1,所以y=4^x在R上是增函数;⑵y=(1/4)^x因为0<1/4<1,所以y=(1/4)^x在R上是减函数

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!