复变函数极限定理证明
发表时间:2024-08-01 00:15:17
来源:网友投稿
先考虑n = 1的情况。
对于一个有界闭集中的实数列,取它的一个单调子列。不妨设这个子列单调递增,由于数列有上界,这个子列必然收敛。又因为集合是闭集,收敛的极限必然在集合中,于是我们找到了收敛的子列,所以集合是序列紧致的。对于证明的思路是取多次子列。设为一个有界序列,则n个实数列都是有界数列。于是存在的子列使得收敛。但是仍是有界数列,因而存在子列使得也收敛(注意这里必然是收敛的)。在进行类似的n次操作后,我们就可以得到一个子列,使得都收敛,也就是说存在子列收敛。由于集合是闭集,收敛的极限必然在集合中,所以集合是序列紧致的,证毕。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
相关资讯
汽修专业新疆怎么找工作
2025-04-06
机械专业专长怎么写简历
2025-04-06
专科怎么报审计专业的
2025-04-06
专业学科导师类别怎么填
2025-04-06
查报考专业网站怎么查
2025-04-06
水电专业规划怎么写简历
2025-04-06
表演专业怎么留学的好呢
2025-04-06
专业防雷检测怎么收费的
2025-04-06
怎么查询同等学力专业
2025-04-06
高考技能专业怎么选择的
2025-04-06
钢筋套筒专业名称怎么写
2025-04-06
中专怎么填高考志愿专业
2025-04-06
中专统招怎么报志愿专业
2025-04-06
师范专业自我评价怎么写
2025-04-06
景观建筑换专业怎么换好
2025-04-06
建筑专业学生简历怎么写
2025-04-06
推荐资讯
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇
热门关注