当前位置:新励学网 > 秒知问答 > 非齐次向量组有唯一解

非齐次向量组有唯一解

发表时间:2024-08-01 00:27:01 来源:网友投稿

Ax=0无非零解时则A为满秩矩阵。

则Ax=b一定有解;Ax=0有无穷多解时,则A一定不为满秩矩阵;Ax=b的解得情况有无解和无穷多解;无解:R(A)≠R(A|b)无穷解:R(A)等于R(A|b)。且不为满秩Ax=b无解时,可知Ax=0一定有无穷多解;Ax=b有唯一解时,可知A为满秩矩阵,则Ax=0只有零解;齐次线性方程组,要么零解(R(A)=n),要么无穷解(R(A)<n)一个零解,一个非零的唯一解.不能同时发生!扩展资料非齐次线性方程组Ax=b的求解步骤:

(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。

(2)若R(A)=R(B),则进一步将B化为行最简形。

(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数,即可写出含n-r个参数的通解。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!