当前位置:新励学网 > 秒知问答 > 一点到渐近线的距离方程公式

一点到渐近线的距离方程公式

发表时间:2024-08-01 09:52:10 来源:网友投稿

距离公式是|bc|/c=b。

双曲线焦点是(c,0),渐近线是y=(b/a)x,也即bx-ay=0所以距离是:|bc|/根号(a²+b²),而a²+b²=c²,所以距离是:|bc|/c=b(因为b>0)所以焦点到渐近线的距离是b。顶点到渐近线的距离为d=a-bˆ2/a(距离公式必修二)顶点到准线距的准线直接用坐标相减为d=a-bˆ2/a附准线方程为x=bˆ2/a。双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线。所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。在曲线{\\displaystylef(x)=1/x}f(x)=1/x的情况下,渐近线是两个坐标轴。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!