当前位置:新励学网 > 秒知问答 > arctanx是谁的导数

arctanx是谁的导数

发表时间:2024-08-01 10:42:06 来源:网友投稿

arctanx的导数:y=arctanx,x=tany,dx/dy=sec²y=tan²y+1,dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²)。

解:令y=arctanx,则x=tany。对x=tany这个方程“=”的两边同时对x求导,则(x)'=(tany)'1=sec²y*(y)',则(y)'=1/sec²y又tany=x,则sec²y=1+tan²y=1+x²得,(y)'=1/(1+x²)即arctanx的导数为1/(1+x²)。反正切函数arctanx的求导过程设x=tanytany'=sex^yarctanx'=1/(tany)'=1/sec^ysec^y=1+tan^y=1+x^2所以(arctanx)'=1/(1+x^2)

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!