当前位置:新励学网 > 秒知问答 > 反tan函数的导数

反tan函数的导数

发表时间:2024-08-01 11:28:34 来源:网友投稿

arctan导数是:arctanx(即Arctangent)指反正切函数。

反函数与原函数关于y=x的对称点的导数互为倒数。设原函数为y=f(x),则其反函数在y点的导数与f'(x)互为倒数(即原函数,前提要f'(x)存在且不为0)。(arctanx)'=1/(1+x^2)函数y=tanx,(x不等于kπ+π/2,k∈Z)的反函数,记作x=arctany,叫做反正切函数。其值域为(-π/2,π/2)。反正切函数是反三角函数的一种。反三角函数求导公式:反正弦函数的求导:(arcsinx)'=1/√(1-x^2)反余弦函数的求导:(arccosx)'=-1/√(1-x^2)反正切函数的求导:(arctanx)'=1/(1+x^2)反余切函数的求导:(arccotx)'=-1/(1+x^2)

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!