当前位置:新励学网 > 秒知问答 > 实对称矩阵的特征值必为实数

实对称矩阵的特征值必为实数

发表时间:2024-08-01 20:29:40 来源:网友投稿

实对称阵的特征值都是实数,所以n阶阵在实数域中就有n个特征值(包括重数),并且实对称阵的每个特征值的重数和属于它的无关的特征向量的个数是一样的,从而n阶矩阵共有n个无关特征向量,所以可对角化。

判断方阵是否可相似对角化的条件:

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k;

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!