当前位置:新励学网 > 秒知问答 > cos的2次方的导数

cos的2次方的导数

发表时间:2024-08-01 22:33:53 来源:网友投稿

首先我们可以利用链式法则来求导cos²(x)。

链式法则可以表示为:d/dx[f(g(x))] = f'(g(x)) * g'(x)其中,f是一个函数,g是另一个函数,f'和g'分别表示它们的导数。对于cos²(x),我们可以将其表示为f(g(x)),其中f(x) = x²,g(x) = cos(x)。所以cos²(x) = [cos(x)]² = f(g(x))对此方程求导,可得:d/dx[cos²(x)] = f'(g(x)) * g'(x) = 2*cos(x) * (-sin(x)) = -2*cos(x)*sin(x)所以cos²(x)的导数是-2cos(x)sin(x)。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!