当前位置:新励学网 > 秒知问答 > 逆矩阵的行列式为什么不等于0

逆矩阵的行列式为什么不等于0

发表时间:2024-08-02 14:37:06 来源:网友投稿

证明:A的行列式不等于0,而|E|=1,|P|,|Q|不等于0,所以|A|不等于0,A可逆,A可逆充要条件是|A|不等于0.这里P,Q都是可逆的,所以A=P-1Q-1,A-1=QP。

因为A的行列式等于它的所有特征值的乘积。所以A可逆|A|≠0A的特征值都不等于0。(当矩阵行列式不为零,就可以推出伴随阵来计算矩阵的解析式,既然都求出你阵逆阵了,原矩阵当然可逆。反过来当原矩阵可逆时,A乘A的逆等于单位阵,两边取行列式,便得到行列式一定不为零。)设M是n阶方阵,I是单位矩阵,如果存在一个数λ使得M-λI是奇异矩阵(即不可逆矩阵,亦即行列式为零),那么λ称为M的特征值。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!