当前位置:新励学网 > 秒知问答 > 实对称矩阵a与a逆一定合同吗

实对称矩阵a与a逆一定合同吗

发表时间:2024-08-02 14:44:09 来源:网友投稿

A是实对称矩阵,所以A的转置与A相等,然后同时对A和A的转置取逆,可证得A的逆也等于A的逆的转置,所以A的逆等于A的逆的转置乘以A再乘以A的逆,根据合同定义,得证。

对称矩阵是一个方形矩阵,其转置矩阵和自身相等。1855年,埃米特(C.Hermite,1822-1901年)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来克莱伯施(A.Clebsch,1831-1872年)、布克海姆(A.Buchheim)等证明了对称矩阵的特征根性质。泰伯(H.Taber)引入矩阵的迹的概念并给出了一些有关的结论

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!