当前位置:新励学网 > 秒知问答 > 不定积分计算方法

不定积分计算方法

发表时间:2024-08-02 18:58:05 来源:网友投稿

一、积分公式法直接利用积分公式求出不定积分。

二、换元积分法换元积分法可分为第一类换元法与第二类换元法。

1、第一类换元法(即凑微分法)通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

2、注:第二类换元法的变换式必须可逆,并且在相应区间上是单调的。第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:

(1) 根式代换法。

(2) 三角代换法。在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。

三、分部积分法设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu,两边积分,得分部积分公式:∫udv=uv-∫vdu ⑴。称公式⑴为分部积分公式。如果积分∫vdu易于求出,则左端积分式随之得到。分部积分公式运用成败的关键是恰当地选择u,v。不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!