平面与平面垂直的判定定理有哪些
1. 如果两个平面的法向量的点积为零,则它们是垂直的。
即设两个平面的法向量分别为a1、b1、c1和a2、b2、c2,则当a1*a2 + b1*b2 + c1*c2 = 0时,两个平面垂直。
2. 如果两个平面上的直线互相垂直,则这两个平面也是垂直的。即设两个平面上的直线的方向向量分别为u1、v1、w1和u2、v2、w2,则当u1*u2 + v1*v2 + w1*w2 = 0时,两个平面垂直。一般地两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。一个平面过另一个平面的垂线,则这两个平面垂直。平面与平面垂直的判定方法1、定义法:如果两个平面所成的二面角为90°,那么这两个平面垂直。
2、判定定理:如果一个平面一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。一个平面过另一个平面的垂线,则这两个平面垂直。平面与平面垂直的判定方法1、定义法:如果两个平面所成的二面角为90°,那么这两个平面垂直。
2、判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
3、如果一个平面内任意点在另外一个平面的射影均在这两个平面的交线上,那么垂直。
4、如果N个互相平行的平面有一个垂直于一个平面,那么其余平面均垂直这个平面。平面与平面平行必须是“两条相交直线”,且都“平行于另一个平面”推论:如果一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行。面面平行的另一判定定理:垂直于同一条直线的两个平面平行。\\\\x0d直线a,b均在平面α内,且a∩b=A a∥β b∥β。在同一平面内永不相交的两条直线,判定平行线的方法包括同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇