当前位置:新励学网 > 秒知问答 > 空间向量共线和共面的条件

空间向量共线和共面的条件

发表时间:2024-08-02 20:01:28 来源:网友投稿

向量共面的条件如下:设三个向量是向量a,向量b,向量c。

则向量a,向量b,向量c共线的充要条件是:存在两个实数x,y,使得向量a=x向量b+y向量c。(即一个向量可以写成另外两个向量的线性组合)。在数学中向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。基本定理:共线向量定理:两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。空间向量分解定理:如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!