当前位置:新励学网 > 秒知问答 > 可积一定存在原函数吗

可积一定存在原函数吗

发表时间:2024-08-12 03:57:57 来源:网友投稿

可积不一定存在原函数。

函数可积只能知道他的变限积分所构造的函数连续。连续是比可积稍强的条件,也就是说,闭区间连续一定可积,且必有原函数,而且该函数的原函数一定可导。

勒贝格积分是在勒贝格测度理论的基础上建立起来的,函数可以定义在更一般的点集上,更重要的是它提供了比黎曼积分更广泛有效的收敛定理,所以勒贝格积分的应用领域更加广泛。

函数的性质:

设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的。

如果对于区间I上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!