当前位置:新励学网 > 秒知问答 > 柯西准则收敛的六种形式

柯西准则收敛的六种形式

发表时间:2024-08-14 20:15:14 来源:网友投稿

柯西收敛准则没有六种形式,只有一种形式,柯西极限存在准则又叫柯西收敛原理,给出了收敛的充分必要条件。

柯西极限存在准则,又称柯西收敛准则,是用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在以下方面:数列、数项级数、函数、反常积分、函数列和函数项级数每个方面都对应一个柯西准则,所以下文将按照不同的方面对准则进行说明。充分性由于数列的柯西收敛准则是实数连续性的体现之一,所以用实数公理——戴德金定理证明{xn}收敛。首先证明柯西序列是有界的。根据柯西序列的定义,对任意ε>0,存在正整数N,当m,n>N时,有|xn-xm|<ε。于是取m=N+1,则当n>N时,|xn-xN+1|<ε。解得xN+1-ε<xn<xN+1+ε,即当n>N时,{xn}既有上界又有下界,所以是有界的

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!