当前位置:新励学网 > 秒知问答 > 二元复合函数求二阶偏导数

二元复合函数求二阶偏导数

发表时间:2024-08-14 20:21:05 来源:网友投稿

z = f(x-y,xy^2) = f(u,v), 其中 u = x-y, v = xy^2, 得。

z'= f'u'+f'v'= f'+y^2f'。z'= f'u'+f'v'= -f'+2xyf'。z''= [f'+y^2f']'= f''u'+f''v'+2yf'+y^2[f''u'+f''v']。= -f''+(2xy-y^2)f''2xy^3f''+2yf'上述是典型的复合连续函数求二阶偏导数,写法规范。引入:偏导数在一元函数中,导数就是函数的变化率。对于二元函数研究它的“变化率”,由于自变量多了一个,情况就要复杂的多。在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般说来是不同的,所以就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。在这里我们只学习函数 f(x,y) 沿着平行于 x 轴和平行于 y 轴两个特殊方位变动时, f(x,y) 的变化率。偏导数的表示符号为:∂。偏导数反映的是函数沿坐标轴正方向的变化率。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!