当前位置:新励学网 > 秒知问答 > lncosx有积分吗

lncosx有积分吗

发表时间:2024-08-15 14:21:27 来源:网友投稿

lncosx积分意思是对lncosx这个函数,在一个实数区间上的积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

求法:令x=π/2-t,则在积分区间[0,π/2],有∫ln(sinx)dx=∫ln(cosx)dx。另外原式=∫(x=0,π/4)ln(cosx)dx+∫(x=π/4,π/2)ln(cosx)dx。对后一个积分,令x=π/2-θ,则∫(x=π/4,π/2)ln(cosx)dx=∫(θ=0,π/4)ln(sinθ)dθ,∴原式=∫(x=0,π/4)[ln(cosx)+ln(sinx)]dx=∫(x=0,π/4)ln[(1/2)(sin2x)]dx=∫(x=0,π/4)ln(sin2x)dx-(π/4)ln2【再令2x=y】=(1/2)∫(x=0,π/2)ln(siny)dy-(π/4)ln2。∴∫(x=0,π/2)ln(cosx)dx=(1/2)∫(x=0,π/2)ln(cosx)dx-(π/4)ln2,即∫(x=0,π/2)ln(cosx)dx=-(π/2)ln2。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!