托勒密定理的逆定理如何证明
一、(以下是推论的证明,托勒密定理可视作特殊情况。
)在任意凸四边形abcd中(如右图),作△abe使∠bae=∠cad∠abe=∠acd,连接de.则△abe∽△acd所以be/cd=ab/ac,即be·ac=ab·cd(1)由△abe∽△acd得ad/ac=ae/ab,又∠bac=∠ead,所以△abc∽△aed.bc/ed=ac/ad,即ed·ac=bc·ad(2)(1)+(2),得ac(be+ed)=ab·cd+ad·bc又因为be+ed≥bd(仅在四边形abcd是某圆的内接四边形时,等号成立,即“托勒密定理”)复数证明用a、b、c、d分别表示四边形顶点a、b、c、d的复数,则ab、cd、ad、bc、ac、bd的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(ab)(cd)+(ad)(bc)=(ac)(bd),两边取模,运用三角不等式得。等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与a、b、c、d四点共圆等价。四点不限于同一平面。平面上托勒密不等式是三角不等式的反演形式。
二、设abcd是圆内接四边形。在弦bc上,圆周角∠bac=∠bdc,而在ab上,∠adb=∠acb。在ac上取一点k,使得∠abk=∠cbd;因为∠abk+∠cbk=∠abc=∠cbd+∠abd,所以∠cbk=∠abd。所以△abk与△dbc相似,同理也有△abd~△kbc。所以ak/ab=cd/bd,且ck/bc=da/bd;所以ak·bd=ab·cd,且ck·bd=bc·da;两式相加,得(ak+ck)·bd=ab·cd+bc·da;但ak+ck=ac,所以ac·bd=ab·cd+bc·da。证毕。
三、托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形abcd,求证:ac·bd=ab·cd+ad·bc.证明:如图1,过c作cp交bd于p,使∠1=∠2,又∠3=∠4,∴△acd∽△bcp.得ac:bc=ad:bp,ac·bp=ad·bc①。又∠acb=∠dcp,∠5=∠6,∴△acb∽△dcp.得ac:cd=ab:dp,ac·dp=ab·cd②。
①+②得ac(bp+dp)=ab·cd+ad·bc.即ac·bd=ab·cd+ad·bc.四、广义托勒密定理:设四边形abcd四边长分别为a,b,c,d,两条对角线长分别为m,n,则有:m^2*n^2=a^2*c^2+b^2*d^2-2abcd*cos(a+c)
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇