分母裂项拆分万能公式是什么
1/[n(n+1)]=(1)- [1/(n+1)]。
1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]。1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}。 数列裂项求和法例题 1/(3n-2)(3n+1) 1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1) 只要是分式数列求和,可采用裂项法 裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数。 裂项求和与倒序相加、错位相减、分组求和等方法一样,是解决一些特殊数列的求和问题的常用方法.这些独具特点的方法,就单个而言,确实精巧。 例子: 求和:
1、/2+1/6+1/12+1/20 =1/(1*2)+1/(2*3)+1/(3*4)1/(4*5) =(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5) =1-1/5=4/5 裂项法求和公式 (1)1/[n(n+1)]=(1)- [1/(n+1)] (2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)] (3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]} (4)1/(√a+√b)=[1/(a-b)](√a-√b) (5) n·n!=(n+1)!-n! (6)1/[n(n+k)]=1/k[1-1/(n+k)] (7)1/[√n+√(n+1)]=√(n+1)-√n (8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇