如何证明圆的切线方程
切线方程圆的切线方程:[过圆外一点的2条切线]过圆外一点的2条切线若点P(x0,y0)在圆x^2+y^2+Dx+Ey+F=0上,则过点P的切线方程为x0x+y0y+D*(x+x0)/2+E*(y+y0)/2+F=0或表述为:若点P(x0,y0)在圆(x-a)^2+(y-b)^2=r^2上,则过点P的切线方程为(x-a)(x0-a)+(y-b)(y0-b)=r^2[编辑本段]关于圆的切线方程的证明:对于“若点P(x0,y0)在圆(x-a)^2+(y-b)^2=r^2上,则过点P的切线方程为(x-a)(x0-a)+(y-b)(y0-b)=r^2的证明”1)简单易理解的是向量法证明设圆上一点A为(x0,y0),则该点与圆心O的向量OA=(x0-a,y0-b)因为过该点的切线与该方向半径垂直,则有切线方向上的单位向量与向量OA的点积为0.设直线上任意点B为(x,y)则直线方向上的向量AB=(x-x0,y-y0)AB●OA=(x-x0)(x0-a)+(y0-b)(y-y0)=0将(x-x0)(x0-a)+(y0-b)(y-y0)变形处理:原式=(x-a+a-x0)(x0-a)+(y0-b)(y-b+b-y0)=(x-a)(x0-a)+(y-b)(y0-b)-(x0-a)^2-(y0-b)^2将变形带入。
(x-a)(x0-a)+(y-b)(y0-b)=(x0-a)^2+(y0-b)^2=r^22)思路简单但运算麻烦的解法,算斜率设圆上一点A为(x0,y0),则有:(x0-a)^2+(y0-b)^2=r^2对隐函数求导,则有:2(x0-a)dx+2(y0-b)dy=0dy/dx=(a-x0)/(y0-b)=k(隐函数求导法亦可证明椭圆的切线方程,方法雷同)或直接k1=(y0-b)/(x0-a); k*k1=-1;(k1为与切线垂直的半径斜率。)得k=(a-x0)/(y0-b) (以上处理是假设斜率存在,在后面讨论斜率不存在的情况)所以切线方程可写为:y=(a-x0)/(y0-b)x+B将点(x0,y0),可求出B=(x0-a)x0/(y0-b)+y0所以:y(y0-b)+(x0-a)x=(x0-a)x0+(y0-b)y0(y0-b)(y-b+b-y0)+(x0-a)(x-a+a-x0)=0(y0-b)(y-b)+(x0-a)(x-a)=(x0-a)^2+(y0-b)^2(y0-b)(y-b)+(x0-a)(x-a)=R^2当斜率不存在时,切点为与x轴平行的直线过圆心与圆的交点。此类切点有2个,不妨设为M(a-r,b);N(a+r,b)(y0-b)(y-b)+(x0-a)(x-a)=r^2将2点带入上式,亦成立。故得证。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇