当前位置:新励学网 > 秒知问答 > 费根鲍姆常数的定义及意义

费根鲍姆常数的定义及意义

发表时间:2024-08-23 17:05:27 来源:网友投稿

费根鲍姆常数的存在反映了混沌演化过程中的有序性。

如何解释这个常数的重要性,举一个简单的例子。让我们从一个规律滴水的水龙头开始,它的节奏是重复的“滴-滴-滴-滴…”,每一滴都跟前面的完全一样。然后我们将水龙头转开一点,水滴就会落得比之前快一些,而节奏也就相应变成了“滴-答,滴-答…”,每两滴才重复一次,前后两滴不止是大小不同,就连时间间隔也有些细微的变化。如果我们让水滴流得再稍微快一点,就会得到四滴的节奏“滴-答-滴-答…”。再快一点的话,则会产生八滴的节奏“滴-答-滴-答-滴-答-滴-答…”。也就是说不同形式的水滴数目一直加倍。在数学模型中,这个过程会无限延续下去,节奏的周期会再变为十六滴、三十二滴、六十四滴等等。不过想要产生周期加倍的现象,每次需要增加的水流速率却越来越小。而在某一个流速下,周期加倍的发生率会变成无限大,此时,每一滴水都不会出现重复的模式,这就是混沌现象。这种产生混沌的情节,称为“周期倍增级联”(Period-doubling cascade),菲根鲍姆发现了一个可藉实验测量的特殊数字,它与每一个周期倍增级联都有关系,这个数字的值大约是4.6692,称为菲根鲍姆常数δ,它的地位与π平起平坐,两者在数学以及数学与自然的关系中,似乎都有非比寻常的重大意义

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!