正交矩阵的逆矩阵等于转置矩阵吗
正交矩阵定义是A的转置乘A等于单位阵E,即AT*A=E,等式两边同乘A的逆,就可以得到A的转置等于A的逆.如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵 。
正交矩阵是实数特殊化的酉矩阵,所以总是属于正规矩阵。扩展资料:在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。
1. 方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;2.方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;3.A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;4.A的列向量组也是正交单位向量组。
5. 正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵 。矩阵A的转置矩阵A^T等于A的逆矩阵A^-1证明:那么AA^T=AA^-1=E设A=(α1,α2,α3,...,αn)^T,其中αi为n维列向量,那么A^T=(α1,α2,α3,...,αn),α1^Tα1,α1^Tα2,α1^Tα3,...,α1^Tαnα2^Tα1,α2^Tα2,α2^Tα3,...,α2^Tαn那么AA^T=( ...............)=E,αn^Tα1,αn^Tα2,αn^Tα3,...,αn^Tαn那么||αi^Tαi||=1,||αi^Tαj||,i≠j,也就是说A的每一个列向量的长度等于1并且每两个行向量相互正交同理设A=(α1,α2,α3,...,αn)时用A^TA=E可以证明A的每一个行向量的长度等于1并且每两个行向量相互正交。这样的矩阵叫做正交矩阵,也就是说A必须是单位矩阵才满足A^T=A^-1。正交矩阵是实数特殊化的酉矩阵,所以总是正规矩阵。尽管我们在这里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但是存在一种复正交矩阵,复正交矩阵不是酉矩阵。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇