当前位置:新励学网 > 秒知问答 > 矩阵能相似对角化的充要条件

矩阵能相似对角化的充要条件

发表时间:2024-08-24 13:12:32 来源:网友投稿

假设矩阵为A,则充要条件为: 1)A有n个线性无关的特征向量. 2)A的极小多项式没有重根. 充分非必要条件: 1)A没有重特征值 2)A*A^H=A^H*A 必要非充分条件: f(A)可对角化,其中f是收敛半径大于A的谱半径的任何解析函数 拓展资料 1、如果这个矩阵可以化为对角矩阵的话那求特征值吧,它的特征值就是对角矩阵的元素,前提是该矩阵是可化为对角矩阵的,如果是对称矩阵,那对称矩阵一定可以化为对角矩阵。

2、相似对角化是指将原矩阵化为对角矩阵,且对角矩阵对角线上的每个元素都是原矩阵的特征值。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!