当前位置:新励学网 > 秒知问答 > 一元三次方程根与系数的关系

一元三次方程根与系数的关系

发表时间:2024-10-25 09:01:35 来源:网友投稿

一元三次方程的根与系数之间存在以下关系:如果一元三次方程为(ax^3+bx^2+cx+d=0),其三个根分别为(x_1)、(x_2)和(x_3),则有以下关系:

根的和:(x_1+x_2+x_3=-\frac{b}{a}),即所有根的代数和等于系数(b)除以(a)的相反数。

根的乘积:(x_1x_2x_3=-\frac{d}{a}),即所有根的乘积等于常数项(d)除以(a)的相反数。

根的和的平方减去三倍的根的乘积:((x_1+x_2+x_3)^2-3x_1x_2x_3=\frac{2c}{a}),即所有根的和的平方减去三倍根的乘积等于(c)除以(a)的两倍。

这些关系可以帮助我们通过方程的系数来推断根的性质,或者在已知根的情况下求解系数。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!