关于初二数学练习题
先拆开
分组分解法
分组分解是解方程的一种简洁的方法,我们来学习这个知识。能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。同样这道题也可以这样做。ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)几道例题:1.5ax+5bx+3ay+3by解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。2.x^3-x^2+x-1解法:=(x^3-x^2)+(x-1)=x^2(x-1)+(x-1)=(x-1)(x^2+1)利用二二分法,提公因式法提出x2,然后相合轻松解决。3.x^2-x-y^2-y解法:=(x^2-y^2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)利用二二分法,再利用公式法a^2-b^2=(a+b)(a-b),然后相合解决。
十字相乘法
这种方法有两种情况。①x^2+(p+q)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q).②kx^2+mx+n型的式子的因式分解如果有k=ab,n=cd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).图示如下:a╲╱cb╱╲d例如:因为1╲╱2-3╱╲7-3×7=-21,1×2=2,且2-21=-19,所以7x2-19x-6=(7x+2)(x-3).十字相乘法口诀:首尾分解,交叉相乘,求和凑中
拆项、添项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意必须在与原多项式相等的原则下进行变形。例如:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=(bc+ca)(c-a)+(bc-ab)(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b).
配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。例如:x^2+3x-40=x^2+3x+2.25-42.25=(x+1.5)^2-(6.5)^2=(x+8)(x-5).
应用因式定理
对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).)注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数;2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数
换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。相关公式
注意:换元后勿忘还元.例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x^2+x,则原式=(y+1)(y+2)-12=y^2+3y+2-12=y^2+3y-10=(y+5)(y-2)=(x^2+x+5)(x2+x-2)=(x^2+x+5)(x+2)(x-1).也可以参看右图。
求根法
令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4+7x^3-2x^2-13x+6=0,则通过综合除法可知,该方程的根为0.5,-3,-2,1.所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).
图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1,x2,x3,……xn,则多项式可因式分解为f(x)=f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).与方法⑼相比,能避开解方程的繁琐,但是不够准确。例如在分解x^3+2x^2-5x-6时,可以令y=x^3;+2x^2-5x-6.作出其图像,与x轴交点为-3,-1,2则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).
主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
特殊值法
将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。例如在分解x^3+9x^2+23x+15时,令x=2,则x^3+9x^2+23x+15=8+36+46+15=105,将105分解成3个质因数的积,即105=3×5×7.注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。
待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)相关公式
=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd由此可得a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4.解得a=1,b=1,c=-2,d=-4.则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4).也可以参看右图。
双十字相乘法
双十字相乘法属于因式分解的一类,类似于十字相乘法。双十字相乘法就是二元二次六项式,启始的式子如下:ax^2+bxy+cy^2+dx+ey+fx、y为未知数,其余都是常数用一道例题来说明如何使用。例:分解因式:x^2+5xy+6y^2+8x+18y+12.分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。解:图如下,把所有的数字交叉相连即可x2y2①②③x3y6∴原式=(x+2y+2)(x+3y+6).双十字相乘法其步骤为:①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y);②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y²+18y+12=(2y+2)(3y+6);③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。利用根与系数的关系对二次多项式进行因式分解例:对于二次多项式aX^2+bX+c(a≠0)aX^2+bX+c=a[X^2+(b/a)X+(c/a)X].当△=b^2-4ac≥0时,=a(X^2-X1-X2+X1X2)=a(X-X1)(X-X2).
编辑本段多项式因式分解的一般步骤
①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;④分解因式,必须进行到每一个多项式因式都不能再分解为止。也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”几道例题1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项)=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)=[(1+y)+x^2(1-y)]^2-(2x)^2=[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).2.求证:对于任何实数x,y,下式的值都不会为33:x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)=(x+3y)(x^4-5x^2y^2+4y^4)=(x+3y)(x^2-4y^2)(x^2-y^2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y).(分解因式的过程也可以参看右图。)当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。分析:此题实质上是对关系式的等号左边的多项式进行因式分解。证明:∵-c^2+a^2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0.∴(a-c)(a+2b+c)=0.∵a、b、c是△ABC的三条边,∴a+2b+c>0.∴a-c=0,即a=c,△ABC为等腰三角形。4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇