当前位置:新励学网 > 秒知问答 > 有边长怎么计算三角形的角度

有边长怎么计算三角形的角度

发表时间:2024-07-28 06:16:39 来源:网友投稿

已知三角形边长,计算三角形的角度过程如下:

1、设三角形中角A所对应的边长是a,角B所对应的边长是b,角C所对应的边长是c。再利用公式:

①CosA=(c^2+b^2-a^2)/2bc

②CosB=(a^2+c^2-b^2)/2ac

③CosC=(a^2+b^2-c^2)/2ab

算出每一个角的余弦值,利用计算器上的反余弦函数功能就可以计算出各自的角度值。

2、如果三角形是钝角三角形,计算出的钝角的余弦值是负的,角度也就是负的,这时要加上180度才是钝角的角度。(注:a^2+b^2-c^2=0说明C的角度等于90度)

3、如果这个三角形是直角三角形,设这个直角三角形的三条边和三个内角分别是a,b,c,A,B,C,可以用以下两种方式计算:

一是利用正弦定理:

a/sinA=b/sinB=c/sinC=2R(R是三角形外接圆半径)二是利用余弦定理:

a^2=b^2+c^2-2bc*cosAb^2=c^2+a^2-2ac*cosBc^2=a^2+b^2-2ab*cosC

扩展资料:

一、已知三角形边,求角度,这种求法称之为“解三角形”。解三角形一般需要用到如下定理:

1、正弦定理

a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。

2、余弦定理

①a²=b²+c²-2bccosA

②b²=a²+c²-2accosB

③c²=a²+b²-2abcosC

二、三角形中已知某条件求未知量(如已知三边,求三个内角度数),一般有对应的公式:

1、以下情况利用正弦定理:

①已知条件:一边和两角(如a、B、C,或a、A、B)

一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。

②已知条件:两边和其中一边的对角(如a、b、A)

一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C边,可有两解、一解或无解。(或利用余弦定理求出c边,再求出其余两角B、C)①若a>b,则A>B有唯一解;

②若b>a,且b>a>bsinA有两解;

③若a<bsinA则无解。

2、以下情况利用余弦定理:

①已知条件:两边和夹角(如a、b、C)

一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。

②已知条件:三边(如a、b、c)

一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!