当前位置:新励学网 > 秒知问答 > 互为对称矩阵的充要条件

互为对称矩阵的充要条件

发表时间:2024-07-28 07:47:17 来源:网友投稿

先证明A是n阶对称矩阵充分必要条件是A=A^T,设A=(aij)n*n,A^T=(bij)n*n aij=bji 1<=i,j<=n,当A是对称矩阵时,aij=aji (n*n),当然有A=A^T,当A=A^T时,aij=aji,即A是对称矩阵。已知A、B是n阶对称矩阵时,A=A^T B=B^T,若AB=BA,两边转置有:(AB)^T=(BA)^T 即:(AB)^T=A^TB^T,故AB=BA,原命题成立。对称矩阵是元素以对角线为对称轴对应相等的矩阵。1855年,埃米特(C.Hermite,1822-1901)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来克莱伯施(A.Clebsch,1831-1872年)、布克海姆(A.Buchheim)等证明了对称矩阵的特征根性质。泰伯(H.Taber)引入矩阵的迹的概念并给出了一些有关的结论。两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:X=1/2(X+XT)+1/2(X-XT)。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!