当前位置:新励学网 > 秒知问答 > 怎么推导指数函数的导数公式

怎么推导指数函数的导数公式

发表时间:2024-07-29 23:17:49 来源:网友投稿

设:指数函数为:y=a^xy'=lim【△x→0】[a^(x+△x)-a^x]/△xy'=lim【△x→0】{(a^x)[(a^(△x)]-a^x}/△xy'=lim【△x→0】(a^x){[(a^(△x)]-1}/△xy'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x…………(1)设:[(a^(△x)]...

指数函数求导公式:(a^x)'=(a^x)(lna)。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

指数函数的导数公式是什么

y=a^x

两边同时取对数:

lny=xlna

两边同时对x求导数:

==>y'/y=lna

==>y'=ylna=a^xlna

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!