当前位置:新励学网 > 秒知问答 > 矩阵等价,相似,合同之间的区别和联系

矩阵等价,相似,合同之间的区别和联系

发表时间:2024-08-27 17:42:45 来源:网友投稿

一、矩阵等价、相似和合同之间的区别:

1、等价,相似和合同三者都是等价关系。

2、矩阵相似或合同必等价,反之不一定成立。

3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。

4、矩阵相似,则存在可逆矩阵P使得,AP=PB。

5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。

6、当上述矩阵P是正交矩阵时,即P^T=P^(-1),则有A,B之间既满足相似,又满足合同关系。

二、矩阵等价、相似、合同之间联系:

1、矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件。

2、矩阵等价是相似、合同的必要条件,相似、合同是等价的充分条件。

3、矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,也存在合同但不相似的矩阵。

4、总结起来就是:相似=>等价,合同=>等价,等价=>等秩。

扩展资料:

矩阵等价:

1、同型矩阵而言。 

2、一般与初等变换有关。

3、 秩是矩阵等价的不变量,其次两同型矩阵相似的本质是秩相等。

矩阵相似:

1、针对方阵而言。

2、秩相等是必要条件。

3、本质是二者有相等的不变因子。

矩阵合同:

1、针对方阵而言,一般是对称矩阵。

2、秩相等是必需条件。

3、本质是秩相等且正惯性指数相等,即标准型相同。 

通过上述的对比可知,等价关系是三种关系中条件最弱的,合同与相似是特堵的等价关系,若两个矩阵相似或合同,则这两个矩阵一定等价,反之不成立,相似与合同不能互相推导,但是如果两个实对称矩阵式相似的,那一定是合同的。

参考资料:

等价矩阵-百度百科

合同矩阵-百度百科

相似矩阵-百度百科

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!