数学语言的针对数学语言三大特点的教学策略
数学语言作为一种表达科学思想的通用语言和数学思维的最佳载体,包含着多方面的内容;其中较为突出的是叙述语言、符号语言及图形语言,其特点是准确、严密、简明。由于数学语言是一种高度抽象的人工符号系统,所以它常成为数学教学的难点。一些学生之所以害怕数学,一方面在于数学语言难懂难学,另一方面是教师对数学语言的教学不够重视,缺少训练,以致不能准确、熟练地驾驭数学语言。现笔者根据数学语言的特点及数学要求,谈谈自己的认识。普通语言即日常生活中所用语言,这是学生熟悉的,用它来表达的事物,学生感到亲切,也容易理解。其他任何一种语言的学习,都必须以普通语言为解释系统。数学语言也是如此,通过两种语言的互译,就可以使抽象的数学语言在现实生活中找到借鉴,从而能透彻理解,运用自如。“互译”有几方面的意思:
一、 指将普通语言转化为数学语言(即数学化)例如方程是把文字表达的条件改用数学符号,这是利用数学知识来解决实际问题的必要程序。由具体的对应关系逐步抽象形成映射、函数的概念,及对抽象的数学语言理解内化借助普通语言或具体实例表达交流,比如根据映射和函数的定义构造映射和函数实例;
二、 是将数学语言译为普通语言数学实践告诉我们,凡是学生能用普通语言复述概念的定义和解释概念所揭示的本质属性,那么他们对概念的理解就深刻。由于数学语言是一种抽象的人工符号系统,不适于口头表达,所以也只有翻译成普通语言使之“通俗化”才便于交流。
三、 不同形态的数学语言之间的转换比如集合的自然语言表示、符号语言表示及韦恩图表示。又比如函数y=f(x)在[a,b]上。“互译”有助于激发学生学习兴趣,加深对数学本质的理解,增强辨析能力,互译的过程体现对立统一的辩证思想,有助于不同思路的转换与问题化归。注重数学语言学习的过程,合理安排教学数学概念和数学符号的形成一般包括逻辑过程、心理过程和教学过程三个环节。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇